
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

95 IJDCST

DDoS Counter Measures Based on Snort’s
detection system

S.Manjari1, Mr K.Raja Sekhar2

1 Student, K.L.University,Vaddeswaram,Guntur(dt),, Andhra Pradesh, India

2 Professor, K.L.University,Vaddeswaram,Guntur(dt), Andhra Pradesh, India

ABSTRACT: DDoS attacks are mainly used for flooding a particular victim with massive traffic and paralyzing its
services. Recent works aim at countering DDoS attacks by fighting the underlying vector, which is usually the use
of botnets. The sudden increase in traffic can cause the server to offer degraded performance. My Doom devastation
on Microsoft, wiki leaks encounter with ddos barrages are some examples to highlight the impact. A botnet is a large
network of compromised machines (bots) controlled by one entity (the master). The master can launch synchronized
attacks, such as DDoS, by sending orders to the bots via a Command & Control channel and other major Internet
players like Amazon, CNN, and Yahoo are no exception. Early discovery of these attacks, although challenging, is
necessary to protect victim server's network infrastructure resources. Previous intrusion prevention systems like
FireCol although efficient in thwarting DDoS, its architecture is based on ISP collaboration and virtual protection
rings. We propose to use an IPS rules (Snort rules) driven DDoS detection approach that checks various parts of a
data packet and not just the header. SNORT is one popular and actively developing open-source Intruder Detection
System that uses such a set of signatures known as SNORT rules. This enables the detection system to eliminate
other forms DoS attacks such as Slow Read DoS attack. Its effectiveness and low overhead, as well as its support for
incremental deployment in real networks are demonstrated.

I INTRODUCTION

DDoS attacks are mainly used for flooding a
particular victim with massive traffic and paralyzing
its services. Recent works aim at countering DDoS
attacks by fighting the underlying vector, which is
usually the use of botnets. A botnet is a large network
of compromised machines (bots) controlled by one
entity (the master). The master can launch
synchronized attacks, such as DDoS, by sending
orders to the bots via a Command & Control channel.
Unfortunately, detecting a botnet is hard, and an
efficient solution requires scanning entities to
participate actively in the botnet itself unlike entities
scanning from a safe distance. A single intrusion
prevention system (IPS) or intrusion detection system
(IDS) can hardly detect such DDoS attacks, unless
they are located very close to the victim. However,
even in that latter case, the IDS/IPS may crash
because it needs to deal with an overwhelming

volume of packets (some flooding attacks reach 10–
100 Gb/s). In addition, allowing such huge traffic to
transit through the Internet and only detect/block it at
the host IDS/IPS may severely strain Internet
resources. So a collaborated system is required that
can empower the single host based detection and
blocking procedures for an efficient prevention of
DDoS

Existing technique i.e., FireCol, a new
collaborative system that detects flooding DDoS
attacks as far as possible from the victim host and as
close as possible to the attack source(s) at the Internet
service provider (ISP) level. FireCol relies on a
distributed architecture composed of multiple ISPs
forming overlay networks of protection rings around
subscribed customers. The virtual ring uses
horizontal communication when the degree of a
potential attack is high. In this way, the threat is
measured based on the overall traffic bandwidth
directed to the customer compared to the maximum
bandwidth it supports. FireCol ARCHITECTURE



INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-II IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

96 IJDCST

uses the following algorithms: Packet rate
computation using rule frequencies (collaboration
manager) and Mitigation Sheilds Deployment. In
addition to detecting flooding DDoS attacks, FireCol
also helps in detecting other flooding scenarios, such
as flash crowds, and other botnet-based DDoS attacks
thus offering a better performance.

FireCol's defense procedures(virtual protection
rings notion) is not based on IPS rule structures(Snort
Rules). In this paper, we Extending FireCol to
support different IPS rule structures will help FireCol
thwart other forms of DoS attacks especillay the
latest entrant Slow Read DoS attack. Like viruses,
most intruder activity has some sort of signature.
Information about these signatures is used to create
Snort rules. Snort’s detection system is based on
rules. These rules in turn are based on intruder
signatures. Snort rules can be used to check various
parts of a data packet not just the header scanning
adapted by prior approaches. A rule may be used to
generate an alert message, log a message, or, in terms
of Snort, pass the data packet, i.e., drop it silently.
Thus enabling a detection system eliminating other
forms DoS attacks such as Slow Read DoS attack.
Snort Based DoS detection system can be a real time
efficient and feasible implementation that can counter
varying DoS attack forms.

II RELATED WORK
IDS
Intrusion Detection System or IDS is software,

hardware or combination of both used to detect
intruder activity. Snort is an open source IDS
available to the general public. An IDS may have
different capabilities depending upon how complex
and sophisticated the components are. IDS appliances
that are a combination of hardware and software are
available from many companies.

Network IDS or NIDS
NIDS are intrusion detection systems that

capture data packets traveling on the network media
(cables, wireless) and match them to a database of
signatures. Depending upon whether a packet is
matched with an intruder signature, an alert is
generated or the packet is logged to a file or database.

Host IDS or HIDS
Host-based intrusion detection systems or

HIDS are installed as agents on a host. These
intrusion detection systems can look into system and
application log files to detect any intruder activity.
Some of these systems are reactive, meaning that
they inform you only when something has happened.
Some HIDS are proactive; they can sniff the network
traffic coming to a particular host on which the HIDS
is installed and alert you in real time.

Signatures
Signature is the pattern that you look for

inside a data packet. A signature is used to detect one
or multiple types of attacks. For example, the
presence of “scripts/admin” in a packet going to your
web server may indicate an intruder activity.
Signatures may be present in different parts of a data
packet depending upon the nature of the attack. For
example, you can find signatures in the IP header,
transport layer header (TCP or UDP header) and/or
application layer header or payload. Usually IDS
depends upon signatures to find out about intruder
activity. Some vendor-specific IDS need updates
from the vendor to add new signatures when a new
type of attack is discovered.

Alerts
Alerts are any sort of user notification of an

intruder activity. When an IDS detects an intruder, it
has to inform security administrator about this using
alerts. Alerts may be in the form of pop-up windows,
logging to a console, sending e-mail and so on. Alerts
are also stored in log files or databases where they
can be viewed later on by security experts.

III BACKGROUND
Intrusion detection is a set of techniques and

methods that are used to detect suspicious activity
both at the network and host level. Usually an
intrusion detection system captures data from the
network and applies its rules to that data or detects
anomalies in it. Snort is primarily a rule-based IDS,
however input plug-ins are present to detect
anomalies in protocol headers. Snort uses rules stored
in text files that can be modified by a text editor.
Rules are grouped in categories. Rules belonging to



INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-II IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

97 IJDCST

each category are stored in separate files. Snort reads
these rules at the start-up time and builds internal
data structures or chains to apply these rules to
captured data. Finding signatures and using them in
rules is a tricky job, since the more rules use, the
more processing power is required to process
captured data in real time. It is important to
implement as many signatures as it can using as few
rules as possible. Snort comes with a rich set of pre-
defined rules to detect intrusion activity and it is free
to add own rules at will. To avoid false alarms, built-
in rules can also remove.

IV ARCHITECTURE OF SNORT

Fig: Snort Architecture

Decoder: It fits captured packets into data structures
and identifies link level protocols. Then it takes the
next level, decodes IP, and TCP/UDP to get
information about port addresses. Snort alerts for
malformed headers, unusual TCP option.

Preprocessors: They are like filters, which identifies
things that should be checked later in Detection
Engine module (like suspicious connection attempt to

some TCP/UDP port or too many UDP packets
received during a port scan).

Rule files: Text files with rule sets written with a
known syntax.

Detection Plug-ins: Those modules referenced from
its definition in the rule files, and they are intended to
identify patterns whenever a rule is evaluated.

Detection engine: Making use of detection plug-ins,
it matches packets against rules previously charged
into memory since snort initialization. Output plug-
ins: Alerts, logs, extern files, databases.

V PROPOSED SYSTEM

SNORT is one of the most popular NIDS.
SNORT is Open Source, which means that the
original program source code is available to anyone
at no charge, and this has allowed many people to
contribute to and analyse the programs construction.
SNORT uses the most common open-source licence
known as the GNU General Public License. Snort is
logically divided into multiple components. These
components work together to detect particular attacks
and to generate output in a required format from the
detection system. Snort’s architecture consists of four
basic components:

Snort's architecture is focused on
performance, simplicity, and flexibility. There are
three primary subsystems that make up Snort: the
packet decoder, the detection engine, and the logging
and alerting subsystem. These subsystems ride on top
of the libpcap promiscuous packet sniffing library,
which provides a portable packet sniffing and
filtering capability. Program configuration, rules
parsing, and data structure generation takes place
before the sniffer section is initialized, keeping the
amount of per packet processing to the minimum
required to achieve the base program functionality.

(i) The Packet Decoder

The decode engine is organized around the
layers of the protocol stack present in the supported



INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-II IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

98 IJDCST

data-link and TCP/IP protocol definitions. Each
subroutine in the decoder imposes order on the
packet data by over-laying data structures on the raw
network traffic.

These decoding routines are called in order
through the protocol stack, from the data link layer
up through the transport layer, finally ending at the
application layer. Speed is emphasized in this section,
and the majority of the functionality of the decoder
consists of
setting pointers into the packet data for later analysis
by the detection engine. Snort provides decoding
capabilities for Ethernet, SLIP, and raw (PPP) data-
link protocols. ATM support is under development.

(ii) The Detection Engine

Snort maintains its detection rules in a two
dimensional linked list of what are termed Chain
Headers and Chain Options. These are lists of rules
that have been condensed down to a list of common
attributes in the Chain Headers, with the detection
modifier options contained in the Chain Options.

These rule chains are searched recursively
for each packet in both directions. The detection
engine checks only those chain options which have
been set by the rules parser at run-time. The first rule
that matches a decoded packet in the detection engine
triggers the action specified in the rule definition and
returns.

(iii) The Logging/Alerting Subsystem

The alerting and logging subsystem is
selected at run-time with command line switches.
There are currently three logging and five alerting
options. The logging options can be set to log packets
in their decoded, human readable format to an IP-
based directory structure, or in tcpdump binary
format to a single log file. The decoded format
logging allows fast analysis of data collected by the
system. The tcpdump format is much faster to record
to the disk and should be used in instances where
high performance is required. Logging can also be
turned off completely, leaving alerts enabled for even
greater performance improvements.

VI WRITING SNORT RULES

Snort rules are simple to write, yet powerful
enough to detect a wide variety of hostile or merely
suspicious network traffic. There are three base
action directives that Snort can use when a packet
matches a specified rule pattern: pass, log, or alert.

Pass rules simply drop the packet. Log rules
write the full packet to the logging routine that was
user selected at runtime. Alert rules generate an event
notification using the method specified by the user at
the command line, and then log the full packet using
the selected logging mechanism to enable later
analysis.

Snort interprets keywords enclosed in
parentheses as ``option fields''. Option fields are
available for all rule types and may be used to
generate complex behaviors from the program. Snort
version 1.2.1 has fourteen option fields available:

1. content: Search the packet payload for the a
specified pattern.

2. flags: Test the TCP flags for specified settings.
3. ttl: Check the IP header's time-to-live (TTL)

field.
4. itype: Match on the ICMP type field.
5. icode: Match on the ICMP code field.
6. minfrag: Set the threshold value for IP fragment

size.
7. id: Test the IP header for the specified value.
8. ack: Look for a specific TCP header

acknowledgement number.
9. seq: Log for a specific TCP header sequence

number.
10. logto: Log packets matching the rule to the

specified filename.
11. dsize: Match on the size of the packet payload.
12. offset: Modifier for the content option, sets the

offset into the packet payload to begin the
content search.

13. depth: Modifier for the content option, sets the
number of bytes from the start position to
search through.

14. msg: Sets the message to be sent when a packet
generates an event.



INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-II IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

99 IJDCST

These options may be combined in any
manner to detect and classify packets of interest. The
rule options are processed using a logical AND
between them; all of the testing options in a rule must
be true in order for the rule to generate a ``found''
response and have the program perform the rule
action.

VII PERFORMANCE

Consider an Internet packet that contains a
variation of a known attack, there should be some
automated way to identify the packet as nearly
matching a NIDS attack signature. If a particular
statement has a set of conditions against it, an item
may match some of the conditions. Whereas Boolean
logic would give the value false to the query ’does
this item match the conditions’, our logic could allow
the item to match to a lesser extent rather than not at
all. This principle can be applied when comparing an
Internet packet against a set of conditions in a
SNORT rule. Our hypothesis is that if all but one of
the conditions are met, an alert with a lower priority
can be issued against the Internet packet, as the
packet may contain a variation of a known attack.
While implementation, generalisation in the case of
matching network packets against rules, involves
allowing a packet to generate an alert if:

• The conditions in the rule do not all match, yet most
of them do;

• The only conditions that do not match exactly
nearly match.

The change in SNORT’s processing time is an
increase of around four to ten times and roughly in
line with the increase in the number of rules. The
graph showing the bandwidth supported for varying
payload sizes is given below:

Fig: Bandwidth dependence of packet payload size.

Now Provide the results of Snort’s
performance when the rule set sizes are varied. We
chose to investigate the dependence of bandwidth on
the size of the rule set when the Packet size is kept
constant. The first case we consider is the scenario
when the packet size is 1452 bytes.

Fig: Dependence of bandwidth supported on rule set
size (payload size: 1452 bytes)

In this case, the dependence of the
bandwidth supported on the number of rules for
packet IP payload size of 46 bytes.



INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-II IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

100 IJDCST

Fig: Dependence of bandwidth supported on rule set
size (payload size: 46 bytes)

For a given bandwidth, the number of packets
generated will be larger in case of packets with
smaller IP payload, than the case where the payload
is large. When large numbers of packets are
generated, then it becomes difficult to read all of
them from the NIC, and therefore packets are
dropped

VIII CONCLUSION

In this paper, the proposed system extending
FireCol to support different IPS rule structures will
help FireCol thwart other forms of DoS attacks
especially the latest entrant Slow Read DoS attack.
Proposed system was Snort’s detection system which
is based on rules. Like viruses, most intruder activity
has some sort of signature. Information about these
signatures is used to create Snort rules. These rules in
turn are based on intruder signatures. Snort based
detection system consists of several components:
Sniffer, preprocessor, the detection engine, the
output/ alert component. The detection engines make
use of snort rules. Snort rules can be used to check
various parts of a data packet not just the header
scanning adapted by prior approaches. A rule may be
used to generate an alert message, log a message, or,
in terms of Snort, pass the data packet, i.e., drop it
silently. Thus enabling a detection system eliminating
other forms DoS attacks such as Slow Read DoS
attack. Snort Based DoS detection system can be a

real time efficient and feasible implementation that
can counter varying DoS attack forms.

IX REFERENCES

[1] S Axelsson (2000) ’Intrusion Detection Systems:
A Survey and Taxonomy’, Chalmers University Tech
Report, 99-15.
[2] Proctor, Paul E. The Practical Intrusion Detection
Handbook. New Jersey: Prentice Hall PTR, 2001.
[3] Northcutt, Steven. Network Intrusion Detection,
An Analyst’s Handbook. Indianapolis:New Riders,
1999.
[4] Bace, Rebecca. “An Introduction to Intrusion
Detection and Assessment: for System and Network
Security Management.” ICSA White Paper, 1998.
[5] G. Badishi, A. Herzberg, and I. Keidar, “Keeping
denial-of-service attackers in the dark,” IEEE Trans.
Depend. Secure Comput., vol. 4, no. 3, pp. 191–204,
Jul.–Sep. 2007.
[6] T. Peng, C. Leckie, and K. Ramamohanarao,
“Detecting distributed denial of service attacks by
sharing distributed beliefs,” in Proc. 8th ACISP,
Wollongong, Australia, Jul. 2003, pp. 214–225.
[7] M. Vallentin, R. Sommer, J. Lee, C. Leres, V.
Paxson, and B. Tierney, “The NIDS cluster: Scalable,
stateful network intrusion detection on commodity
hardware,” in Proc. 10th RAID, Sep. 2007, pp. 107–
126.
[8] Sourcefire Inc, M Roesch and C Green (2006)
’SNORT Users Manual - SNORT Release: 2.6.0’,
http://www.snort.org
[9] J Hoagland and S Staniford (2003) ’Viewing IDS
alerts: Lessons from SnortSnarf’,
http://www.silicondefense.com/research/whitepapers/
index.php


